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Abstract
Mobility on demand (MoD) systems have recently emerged as a promising paradigm for sustainable personal urban mobility
in cities. In the context of multi-agent simulation technology, the state-of-the-art lacks a platform that captures the dynamics
between decentralized driver decision-making and the centralized coordinated decision-making. This work aims to fill this
gap by introducing a comprehensive framework that models various facets of MoD, namely heterogeneous MoD driver
decision-making and coordinated fleet management within SimMobility, an agent- and activity-based demand model integrated
with a dynamic multi-modal network assignment model. To facilitate such a study, we propose an event-based modeling
framework. Behavioral models were estimated to characterize the decision-making of drivers using a GPS dataset from a
major MoD fleet operator in Singapore. The proposed framework was designed to accommodate behaviors of multiple on-
demand services such as traditional MoD, Lyft-like services, and automated MoD (AMoD) services which interact with traffic
simulators and a multi-modal transportation network. We demonstrate the benefits of the proposed framework through a
large-scale case study in Singapore comparing the fully decentralized traditional MoD with the future AMoD services in a rea-
listic simulation setting. We found that AMoD results in a more efficient service even with increased demand. Parking strate-
gies and fleet sizes will also have an effect on user satisfaction and network performance.

A majority of past research efforts have been devoted to
modeling and optimizing mobility on demand (MoD)
fleet operations (1). Much less attention has been paid to
the decentralized nature of the MoD decision-making
process (2), which arises from the dependency of current
MoD systems on drivers and their decision power. In the
context of multi-agent simulation technology, although
some facets of centralized MoD operations—such as
street pickups, queueing, routing, and fleet dispatch—
have been modeled, there is no platform that captures the
dynamics between decentralized driver decision-making
and centralized decision-making. Such a decentralized
perspective is critical in modeling MoD systems and the
potential impacts of automation, as drivers can only be
informed, incentivized, or coordinated but not centrally
controlled (3).

This work aims to fill this gap by introducing a com-
prehensive framework that models various facets of
MoD driver behavior along with a decentralized fleet

management system within an agent-based demand-sup-
ply simulator, SimMobility Mid-Term. The SimMobility
Mid-Term (MT) simulator is an agent- and activity-
based demand model integrated with a dynamic multi-
modal network assignment model (4). The traffic
dynamics are simulated using a multi-modal mesoscopic
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simulator (supply simulator). MT is part of a much
larger simulation platform that also contains long-term
and short-term models. Simulating MoD services is
extremely challenging because of complex interactions
between independent drivers, the central controller, and
travelers’ decision processes. To facilitate the study of
such a complex and partially decentralized system, we
propose an event-based modeling framework. In this
framework, the drivers, the controllers, and the travelers
are represented as separate decision agents making plans
and event-triggered actions. Behavioral models were esti-
mated to characterize the decision-making of drivers
using a GPS dataset from a major MoD fleet operator in
Singapore in 2013, containing position and service status
data over 30 days. A unified framework was developed
to model the operation of both traditional MoD fleets
and emerging ride-hailing services such as Uber and
Lyft-like services. The specific behaviors of MoD service
drivers are modeled within a discrete-choice framework.
Specifically, the following models are proposed: i) Break;
ii) Cruise/Not to Cruise; iii) Stand Choice (choice among
the available MoD stands); iv) Zone Choice during cruis-
ing Model; and v) Route Choice. The suggested models
can reflect strategic decisions made by the driver.

While traditional MoD actions are made by the
driver, some MoD services can coordinate some of the
processes above. Ultimately, automated MoD (AMoD)
services could fully control and optimize all decision-
making processes. The AMoD controller would for
example process travelers’ service requests and assign
them to a given vehicle after considering its current occu-
pancy (and potential route), whether the passenger is
willing to share the ride or not, time to reach the pickup
location, and the travel time to final destination. Thus,
an MoD controller agent in simulation should capture
MoD service status, updated vehicle locations, and then
monitor vehicle movements through the network, react-
ing to incoming requests and changes on the network
and in fleet performance accordingly. A framework to
handle MoD controllers in SimMobility was presented in
(4) and integrated within the calibrated SimMobility
model of Singapore (for details on the estimation, imple-
mentation and validation of the Singapore model, the
reader is referred to (4)). In this paper, we have extended
the MoD controller framework with several features for
service driver behavior modeling and simulation, and
demonstrate it through a case study in Singapore, where
different MoD services are been modeled. Specifically,
traditional MoD is simulated and compared with
AMoD. The current work has five major contributions:
1) development of a comprehensive event-based frame-
work that addresses complex behaviors and interactions
of service drivers, MoD centralized operation, and trave-
lers; 2) incorporation of the proposed framework within

a highly realistic agent-based simulation platform,
SimMobility; 3) evaluation of the suggested framework
against real-world data; 4) demonstration of the pro-
posed framework through a case study of Singapore;
and 5) showcasing of the use of the proposed framework
in the evaluation of potential mechanisms and policies
when deploying MoD services.

The rest of the paper is structured as follows. The next
section provides a literature review on recent MoD and
MoD services modeling and simulation. We then intro-
duce the MoD framework, including the behavioral
models and the MoD controller. This is followed by a
case study demonstrating the use of the MoD framework
for modeling traditional MoD vs AMoD services in
Singapore. Finally, we present the main conclusions and
findings of this work.

Literature Review

Many past research efforts have been devoted to the
modeling of MoD fleet operations. Using the current
extensive review of MoD service modeling and simula-
tion literature (1), we discuss the latest studies, focusing
on three streams: 1) large-scale simulations of MoD ser-
vices; 2) theoretical and mathematical models to describe
different MoD services aspects; and 3) data driven stud-
ies of MoD behavior.

Within the context of the large-scale simulation of
MoD services, a majority of past research has used
microscopic simulation. (5) used MATSim for the mod-
eling of MoD services in Barcelona and Berlin and
focused on assessing the performance of two MoD dis-
patching strategies in balancing supply and demand. The
first strategy always serves waiting requests by dispatch-
ing the nearest idle MoD, but this method has poor per-
formance under high demand. The second strategy is a
balancing strategy that minimizes pickup trip times
instead of serving requests in the first in first out (FIFO)
order. However, neither strategy simulated real MoD
behavior. (6) also used MATSim to simulate the interac-
tion between newly introduced autonomous vehicle
MoD services with the existing means of transport. They
used a simplified version of a greedy controller in a
MATSim scenario of the city of Sioux Falls, South
Dakota, U.S.A. Neither effort using MATSim modeled
the behavior of the MoD driver but used random
choices. (7) studied booking strategies for an MoD dis-
patching system. The study identifies two types of book-
ing: Current Booking (CBK), where the customers make
a booking call for an MoD to arrive as soon as possible;
and Advance Booking (ABK), where customers indicate
a pickup time which is at least in half an hour later. In
the simulation model, the central region of Singapore
was chosen as the study area. The results of the study
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show that advanced booking benefits small MoD opera-
tors with comparatively low booking demand but is inef-
fective for larger MoD operators with high booking
demands. (2) used MoDSim to model MoD behavior at
the macro-level. MoDSim is designed to be a decentra-
lized discrete event simulation; it models MoD drivers’
cruising/roaming behavior while treating the traffic con-
dition in the network as exogenous. Singapore was used
as the study area. (8) developed a mathematical model
for real-time high-capacity ride-sharing. The model was
experimentally validated with New York City MoD
data, and results showed that 98% of MoD rides cur-
rently served by over 13,000 MoD drivers could be
served with just 3,000 MoD vehicles via automation and
sharing.

The second stream of research focuses on small scale
optimization problems and empirical models used to
describe the different aspects of MoD services. (9) stud-
ied the MoD dispatching system in Singapore and pro-
posed a method where the MoD assigned a booking job
to the one with the shortest time path, reaching the cus-
tomer in the shortest time determined by real-time traffic
conditions. The microscopic simulation was performed
in a small toy network. (1) proposed and tested an agent-
based simulation model focused on a shared MoD ser-
vice. The proposed system optimizes fares and travel time
savings for passengers. The simulation did not include a
dynamic traffic model or a dynamic demand model. (10)
focused on e-hailing, proposing a spatial equilibrium
model to balance supply and demand of MoD services.

(11) explored the market demand potential of a
shared-ride MoD. They presented an integrated choice
and latent variable modeling framework for modeling the
number of times per week a shared-ride MoD would be
used if it were implemented at the American University
of Beirut campus. A series of studies by Wong et al. (see,
for example, (12)) extensively details the customer-
searching behavior of MoD drivers over different periods
of time. (13) explored methods of optimizing MoD perso-
nalized services. However, this simulation ignores actual
traffic conditions on the network.

The third stream of research consists of data driven
studies that were used to draw insight into the behavior
of MoD drivers. (14) used a stated preference survey of
400 MoD drivers conducted in 2000 in Hong Kong to
estimate a multinomial logit choice model for MoD
customer-searching behavior and discovered that the
journey time, toll, and waiting time were found to be sig-
nificant factors in the choices drivers made at the 1%
level. (15) used the complete trace information from
3,590 MoD drivers in Beijing to understand passenger
denial behavior of MoD drivers. (16) focused on the will-
ingness of MoD drivers to drive to the airport empty and
used AVL data from 8,954 MoD drivers during a period

of five weekdays in Shanghai. Their analysis revealed
that airport-serving MoD drivers earn significantly less
in most time periods during the day, but vacant MoD
drivers are still more likely to serve the airport if they
have relatively higher profits in airport-originated trips.
(17) investigated the factors contributing to single-trip
MoD efficiency. By evaluating MoD performance using
GPS data from 2,000 MoD drivers in Wuhan in 2013,
they found that high-performing, efficient drivers operate
further away from downtown areas and navigate through
the whole city, changing locations consistently to obtain
the best traffic conditions.

Methodologies used so far in the literature focused
mainly on MoD dispatching algorithms with very limited
large-scale applications. Others used a real-world data to
understand a specific MoD driver behavior, but none of
them tried to capture the full set of behavior of the MoD
driver, or combine all the pieces into one comprehensive
framework that could address the complex behaviors and
interactions of MoD drivers, fleet controllers, travelers,
congestion, and other modes. In this study we intend to
fill this gap by developing a comprehensive tool to pre-
dict and evaluate the impact of the transformation of on-
demand services using SimMobility simulator.

Methodology and Framework

Overview of SimMobility Mid-Term Simulator

SimMobility (MT) simulator is an agent-based, fully
econometric, and activity-based demand model inte-
grated with a dynamic traffic assignment model (3, 4). It
is capable of simulating daily travel at the individual
level. The traffic dynamics are simulated using a meso-
scopic simulator. Figure 1 presents the modeling frame-
work structure of the MT simulator in SimMobility. In
this specific study, at the pre-day level (agent planning
stage), different MoD services are introduced, such as
traditional MoD, Uber, and Lyft-like services and, possi-
bly, AMoD services alongside with traditional modes
(car, etc.) to allow the synthetic population of agents to
choose from all modes of interest for the trips associated
with all planned activities. These modes are included in
the combined mode-destination choice models as part of
an agent’s choice set. The outcome of pre-day models is
the daily activity schedule (DAS) which is an input to the
within-day and supply simulators. At the within-day and
supply level, the DASs of all individuals are simulated,
that is, agents’ plans become actions, and it is where the
MoD driver behavior framework was implemented. The
MoD driver behavior framework is the key innovation
of this work and will be discussed in detail in the next
section. Uber and Lyft-like services, and AMoD services
are handled by the MoD controller, which is an external
entity to SimMobility (presented in detail below).
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Flexible Mobility On-Demand Framework

To facilitate the study of complex interactions between
independent drivers, the central controller, and travelers’
decisions, we propose an event-based modeling frame-
work. Here, drivers, controllers, and travelers are repre-
sented as separate decision agents with decision-making
triggered by specific events. In the next sections we will
describe each of these three agents in our proposed
framework, their decision-making dimensions and their
trigger events. It is worth noting that for the service driv-
ers, the richest set of decision dimensions is that of the
traditional MoD driver, that is, the (almost independent)
taxi driver. Therefore, we will first describe this set of
decisions which will later be modified and extended to
accommodate other MoD driver behavior, such as ride-
hailing and shared services.

Traveler Agent

As part of the DAS generated by pre-day, an agent has an
MoD mode assigned, as well as start and end times of activ-
ity and exact location. When the time of simulation reached
its MoD journey starting time, the agent will either: 1) start
searching for an MoD driver on the street, either by hailing
or by walking to the closest MoD stand; or 2) request an
MoD and wait for pickup. Her request is added to a FIFO
array of potential clients for an MoD at that link and waits
for the MoD acceptance. As for the Uber, and Lyft-like
traveler, its meeting point with the driver will be at her home
or activity location. The Uber, and Lyft-like traveler cannot
be picked up at the MoD stand.

Mobility On-Demand Driver Agent

The traditional MoD drivers are modeled as agents with
their own preferences. They can choose their next move

and their next client. Their interactions with the travelers
are a result of driver choice. For the traditional MoD
driver, we embed in the drivers the knowledge of the his-
torical space and time distribution of the clients, based
on historical demand data. The information is then used
by MoD drivers to choose the most adequate MoD
stands at which to stop at different hours of the day and
to choose the most attractive routes for finding clients in
the street.

State Vector of the MoD Driver. An MoD driver is at any
moment in one state of the state vector. To allow for dif-
ferent MoD services, the proposed state vector is com-
posed of the following Boolean variables:

Within-day 
Simulates departure �me choice and route choice 

decisions

Pre-day
Models daily ac�vity travel pa�erns at the individual 

level for a synthe�c popula�on

Service control
MoD controller

SimMobility MT

Supply
Provides network a�ributes and supply-based models 

for both private and public transporta�on modes

Day-
to-day 
learning

Figure 1. SimMobility MidTerm (MT) structure.

Booked (B) An MoD driver is on its way to pick up
a customer. The MoD vehicle is
booked after it interacts
with the controller.

Occupied (O) A client is in the MoD vehicle, and the
MoD driver is heading toward the
client’s destination.

Queueing (Q) The MoD driver is in a queue at an
MoD stand to pick up a client.

Cruising (C) An MoD driver is searching the streets
to find the next client. More
generally, it represents a vehicle
ready to take a passenger.

Direct-to-destination
(D)

The variable describes a state in which
the MoD driver goes directly to a
specific destination. She will
not make intermediate stops or
pickups until she reaches the
destination.

Break (K) The MoD driver is on a break; the
driver will be temporarily
unavailable to accept any kind
of request.
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Events Influencing the MoD Driver Agent. The designed
framework is event driven and there are seven major
event types that influence the MoD driver agent as
follows:

Pickup event: This event occurs when the MoD driver picks
up a traveler. The pickup can happen on-road or at any
stopping bay; we treat different bays as an MoD stand.

Drop-off event: This event occurs when the MoD reaches
the destination of the traveler. After this event, the MoD
driver re-evaluates her strategy.

Join queue event: This event occurs when the MoD driver
reaches the MoD stand. The MoD driver can join the queue
at the stand only if the number of drivers already queueing
at the stand is below capacity.

Controller request event: This event describes the messages
the controller sends to the MoD driver regarding the pickup
request. This event can occur at any time.

Cruising for too long event: This event is triggered when the
MoD driver has been cruising unsuccessfully for too long.
Afterward, the MoD driver will choose ‘‘do not cruise.’’

Queueing for too long event: This event is triggered when the
MoD driver has been queueing unsuccessfully for too long

at an MoD stand. After this event, the MoD driver re-
evaluates her strategy.

Figure 2 describes the traditional MoD driver behavior
framework, showing the decision models and choices.
The simulation starts by loading the agents at their home
location as defined in the synthetic population. The
MoD driver’s initial decision will be to work or to take a
break; if the driver decides to take a break, her state will
change to break activity whose duration is predeter-
mined. Location and time information will be kept in the
simulation.

If the MoD driver chooses to cruise, she will search
the streets to find a client. She can do so by moving
toward a predetermined zone, then the zone-based cruis-
ing model will be activated first and the route choice
model will be activated second. After reaching the desired
zone, the MoD driver will cruise randomly from link to
link with no specific target. The MoD will choose the
desirable zone according to the historical demand. If a
client is found, the MoD driver will pick her up; the route
choice model will be activated, and the MoD will move
toward the client destination. If the MoD driver is cruis-
ing for too long, she will change her state to ‘‘do not
cruise,’’ else, she will go to her initial decision of whether
to take a break.

In the case of a coordinated ride-hailing driver
behavior framework, a majority of the decisions are
taken out so that the driver cannot: 1) choose whether
to cruise or not to cruise; 2) choose to go to an MoD
stand, queue, and pick up a passenger there; 3) choose
to pick up passengers on the street; or 4) choose her
next zone to in which to cruise. On the interaction
between the driver and the MoD controller see
Section 3.5. Note that travelers’ choices are not
modeled in detail and will be incorporated in future
research.

MoD Controller: The Case of Automated MoD

The model of automated MoD (AMoD) builds upon our
previous work (18), extended to handle new capabilities,
for instance, parking, handling single or shareable ride
requests, and so forth. An AMoD service consists of a
fleet of vehicles and a controller. The interactions between
the user, the controller and the vehicles are depicted in
Figure 3. Users send trip requests to the controller, which
assigns them to vehicles in the form of schedules. The
controller computes and continuously updates a schedule
for each vehicle, which dictates the sequence of opera-
tions, that is, pickup, drop-off, and so forth, that the
vehicle will perform. It is worth emphasizing the main
difference between MoD and AMoD services: the former

Cruising Model

Taxi Stand
Choice Model

Zone Based 
Cruising Model

No CruiseCruise

Route
Choice Model

Queuing

Pick
up?

Queuing too 
long?

Pick
up?

Route
Choice To 

Pickup Point

Route
Choice to 

Traveler Des.

Drop 
off

TA

Yes

Yes

No

No

No Yes

Join 
Q?

Yes

No

Cruising 
too 

long?

Break Model

No BreakBreak

Link based 
movement

No

Yes

Figure 2. Traditional MoD driver behavior framework.
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are driven by the choices and the experience of the driv-
ers, while the latter are fully determined by a centralized
controller and vehicles follow the instructions given in
the schedule.

User Requirements. In the trip request, the user specifies:
pickup and drop-off locations; shareability, indicating
whether the user is willing to share her ride with other
users or not; the maximum waiting time she is willing to
accept; and the tolerated delay at arrival, that is, the
amount of additional delay she can accept with respect
to the minimum travel time possible. With the tolerated
delay, the user declares an upper bound of the delay she
is willing to accept. In brief, we call the time constraints
of a trip request its maximum waiting time and tolerated
extra delay.

Controller-Vehicle Interaction. As explained before, the activ-
ities of the vehicles are completely determined by the cen-
tralized controller, by means of schedules computed by
the controller and sent to vehicles. At any time, each
vehicle has a schedule, which is a sequence of commands
that can be of the following types:

� Pickup a user; this includes the user-ID and the
related trip request containing all the user
requirements.

� Drop-off a user: similar to the pickup command.
� Cruise to a certain zone.
� Go to park at a certain node.

The commands in a schedule can be arranged in any
plausible order ensuring, for example, that a drop-off for

Figure 3. Interactions between agents in the model of AMoD service.
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any user comes after the respective pickup and that the
number of passengers never exceeds the number of seats
available in the vehicle.

Schedule Computation. The controller continuously collects
request from users and periodically, that is, every 10 s,
computes or updates vehicle schedules to match them.
The controller computes feasible schedules. A schedule is
feasible if: i) all its pickups can be performed respecting
the maximum waiting time specified in the respective trip
request; and ii) all its drop-offs can be performed respect-
ing the tolerated extra-time specified in the respective trip
request. Note that if a feasible schedule is updated insert-
ing the pickup and the drop-off of a new user, to ensure
that the new schedule is still feasible, not only must we
check that the time constraints of the new user are met,
but we have also to consider that the insertion of the new
pickups and drop-offs may imply a detour for the vehicle
that could delay the pickup of the drop-offs of the pas-
sengers previously inserted in the schedule, possibly vio-
lating their time constraints. If a modified schedule is
unfeasible, the modification is not accepted, that is, the
new passenger cannot be served by that vehicle and the
controller will attempt to match her to another vehicle.
The controller is able to handle both shareable and non-
shareable requests. To do so, first the shareable requests
are matched to the available vehicles with some available
seats, using the insertion heuristic detailed in (18). Then,
the controller matches the non-shareable requests with
the closest empty vehicles. Finally, updated schedules are
sent to the vehicles.

Case Study: From Traditional to
Automated Mobility on Demand in
Singapore

Researchers who have focused on the algorithms to opti-
mize fleet operations, have claimed the superiority of
AMoD over MoD and supported the assumption that
AMoD will improve urban mobility. While research has
produced its claims overlooking the effect of congestion
and an accurate model of drivers, the second side has
been represented, with few exceptions, by conceptual or
economic reasoning, with lack of quantifiable results. To
fully understand the impact of shifting from current
human-driven MoD to future AMoD, we claim it is nec-
essary to accurately model driver behavior, which has
been overlooked in current studies on AMoD. We
demonstrate the validity of this claim by comparing
accurately modeled traditional MoD services and future
AMoD in Singapore.

Model Estimation

For the estimation of each of the driver decision dimen-
sions, a GPS dataset collected from a major MoD fleet
operator in Singapore in 2013 was used. This dataset
contains more 25million records each day for a period
of 30 days, and containing vehicle number, time, posi-
tion, and service status data. The MoD fleet size was
fixed according to the information provided by the Land
Transport Authority in Singapore (19). The simulation is
focused on reproducing MoD driver behaviors in a typi-
cal working day in a city. MoD driver agents are identi-
fied by a synthetic population generated for Singapore
for 2012. Their start time of work and shift duration
were modeled by fitting a distribution based on MoD
GPS data, which was then used to determine each driv-
er’s starting time and shift duration. In Figure 4a and b
the distribution of shift duration and shift starting time,
as obtained using the GPS traces, is presented (in blue).

The specific behaviors of the traditional MoD drivers
are modeled using a discrete-choice framework. Five are
estimated, namely: i) Break Model; ii) Cruising Model; iii)
Stand Choice Model; iv) Zone-Based Cruising Model; and
v) Route Choice Model.

Break Model. The break model was estimated as a binary
logit model estimating the probability of an MoD driver
taking a break. A subsample of 39,831 observations
taken from the GPS dataset was used for the model esti-
mation. Table 1 shows the estimation results of the break
model. The directions of the effects of all variables are
theoretically consistent. 86% of breaks take place outside
the central business district (CBD) and 50% of the driv-
ers take a break within 5 h of their previous one.

Spatial Choice Model: Stand Choice. The second model is for
simulating the choice of a stand. It is estimated as a loca-
tion choice model using the multinomial logit formula-
tion for the probability of an MoD driver choosing a
specific stand from 214 alternative stations scattered
around in the network. We used a subsample of 2,324
observations taken from the GPS dataset. Table 1 pre-
sents the parameter estimates for the stand choice model.
The directions of the effects of all variables are theoreti-
cally reasonable, with an estimated marginal effect of
travel cost per kilometer of 0.24.

Integrated Spatial Choice: Zone-Based Cruising and Route Choice
Model. We estimated a multi-level decision model for the
cruising zone selection and the route selection to reach
the zone, using the nested logit formulation. The model
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Figure 4. The distribution of: (a) shift duration; and (b) shift starting time.

Table 1. The MoD Driver Behavior Model Estimates

Variable Coefficient Asymptotic standard error t statistic Summary statistics

Break model

Break constant –3.03 0.0457 –66.28 Number of
observations = 39,831In CBD dummy –0.47 0.0451 10.43

Log employment 0.19 0.0165 11.5 (0) = 227,608.74
Travel cost to the nearest stand (SGD) –0.473 0.0744 –6.36 (b) = 214,377.43
Time passed from the last break (h) 0.0633 0.00343 18.44 r2 = 0.479
Time left to the end of the shift (h) 0.0557 0.00402 13.84
Number of previous breaks –0.365 0.00787 46.32

Stand choice model

Break constant 2 0.0896 22.37 Num. observations = 2324
In CBD dummy –1.24 0.0944 –13.19
Log employment –0.299 0.0212 –1.41 (0) = 212,254.165
Travel cost to the nearest stand (SGD) –5.02 0.432 –11.88 (b) = 25,720.485
Time passed from the last break (h) 1.08 0.188 –5.72 r2 = 0.533
Time left to the end of the shift (h) 1.75 0.0674 25.94
Number of previous breaks 2.31 0.0792 29.16

Integrated spatial choice and route choice model

In CBD dummy 1.38 0.0748 18.41 Number of
observations = 4999Stand dummy 0.633 0.0427 14.81

Route choice logsum 0.00313 0.000452 6.93 (0) = 234,924.773
Log scale parameter 0.799 0.0102 78.6 (b) = 231,192.34
Zone’s area (km2) 2.38 0.175 13.59 r2 = 0.107

Cruise choice model

Cruise constant 0.639 0.0468 13.65 Number of
observations = 13742Time left to the end of the shift (h) 0.0144 0.00436 3.31

In CBD dummy –0.354 0.0541 –6.53 (0) = 29,525.229
Total pickup at the stand –0.147 0.0403 –3.64 (b) = 27,624.537
Employment density (1/km2) –0.0314 0.00329 –9.52 r2 = 0.200
Travel distance to stand (km) 0.595 0.0373 15.95

Note: Coefficient estimates and ‘‘t-statistics’’ for the variables or constants of each of the models are given in Table 1. Table 1 also gives the log likelihood

function if all values were 0, (O), the log likelihood function for the actual estimates, (b), the number of observations , and r2 is the Roh-square for

the initial model.
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was estimated by the sequential estimation procedure. At
the upper level of this model, the probability of choosing
a specific zone to cruise in among all 1,169 traffic zones,
is estimated while at the lower level, a specific route to
reach this zone is chosen. The data used were a subsam-
ple of 4,000 observations taken from the GPS dataset. As
the number of alternatives is very large, the r2 is small, as
expected. Surprisingly, many highly visited cruise zones
are not in the CBD. In fact, the most visited zone is out-
side the CBD with more than 1,580 pickups.

Cruise Choice Model. The cruise/no cruise choice model
was estimated as a binary logit model, which estimates
the probability of an MoD driver cruising. The data used
were a subsample of 13,742 observations taken from the
GPS dataset. Table 1 presents the parameter estimates
for this model. The directions of the effects of all vari-
ables are theoretically reasonable. Interestingly, it was
found that as the employment density increases, the
driver is less likely to cruise. In Singapore, the high
employment areas are also characterized by many stands
which makes the search for customers easy. Overall 30%
of the drivers choose to go to a stand while the rest
choose to cruise.

Cruising for too long, and queueing for too long are
handled by drawing a unique value for each driver from
the distribution obtained using the GPS data. In
Figure 5, the distribution of cruising and queueing dura-
tions, as obtained using the GPS traces, is presented (in
blue) as well as a log-normal curve that was fitted (in
red).

Study Area

Our study was conducted using a representative synthetic
population and network of Singapore. The total area of
Singapore is 721.5 km2 with a population of 5.3million
in 2012 (20). In Singapore, passengers make over 8mil-
lion trips on a daily basis with an average stop rate of
1.5 per individual. Singapore has a developed transporta-
tion system with 3,356 km of roads which includes 10
expressways. The public transportation system consists
of 15 Mass Rapid Transit (MRT) and Light Rail Transit
(LRT) lines with a total of 124 subway stations (92 MRT
stops and 32 LRT stops) and 728 bus lines spanning the
island with a total of 4,607 bus stops. The road network
consists of 6,220 nodes (intersections), 30,585 segments
(road sections with homogeneous geometry) and 14,799
links (groups of one or more segments with similar prop-
erties). Singapore Island is divided into 1,169 Traffic
Analysis Zones (TAZs).

Experimental Design

Two different scenarios are designed and simulated. We
consider a ‘‘traditional MoD only’’ scenario where tradi-
tional MoD is operated for on-demand service delivery.
The available modes are: single occupancy car (Car);
sharing with one passenger (Car Sharing 2); sharing with
two passengers (Car Sharing 3); Private Bus; public bus;
MRT; Motorcycle; Walk; and traditional MoD. The
modal availabilities are in accordance with our study
area, which we describe in the following section. In the
second scenario we introduce automated MoD, replacing

Figure 5. The distribution of: (a) cruising duration; and (b) queueing duration.
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a traditional MoD service with two new modes: AMoD
as a non-shared, driverless ride (AMoD) and AMoD as
a shared ride (AMoD Pool), while the availability of all
other modes from the base case scenario stays the same.
We refer to this scenario as ‘‘AMoD only’’ scenario. To
generate the demand for AMoD modes, given the
absence of appropriate data, we assumed that individual
preference toward AMoD is similar to that of MoD with
some modifications. The first set of assumptions is that a
single AMoD ride will be 50% cheaper compared with
MoD, and that a shared ride will be 30% cheaper than a
single ride (21). We also implemented a distance-based
additional in-vehicle travel time for the passengers who
share the vehicle with other passengers (based on current

Uber data). Furthermore, we have added the expected
additional waiting time for the AMoD Pool rider. We
conduct morning peak (06:00–10:00 a.m.) simulations for
each scenario in SimMobility using the Singapore net-
work. The results are summarized in the following sec-
tion. We also compare the impacts of fleet size and
parking strategies for AMoD on network performance.

Results and Discussion

The mode share distribution for each scenario, and the
demand locations for MoD and AMoD are shown in
Figure 6. In the ‘‘traditional MoD only’’ case, MRT and
Public bus (PT) account for 48.6% of the share, while

Figure 6. Mode share and demand profile during morning peak for: (a) traditional MoD; and (b) automated mobility on demand services.
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Walk is about 20% of the share, and Private Bus 10%.
Private car accounts for 12% of the share, and an addi-
tional 4.3% will share the Car with passengers. The tra-
ditional MoD service consists of 3% of the share. In the
‘‘AMoD only’’ scenario, where AMoD services are
offered as a substitute for traditional MoD services, we
see a significant reduction in PT mode share of more
than 6%, with a shift toward AMoD, which consists of
13.2%. We also observe a small reduction in Walk and
Private Bus, as well as in Car Sharing modes, while there
is no change in the Car mode share.

Figure 7 shows the activity of the traditional MoD
drivers under the models specified in section 4. As
expected, the number of drivers queueing at the MoD
stands and cruising reduces during peak hours. On aver-
age, drivers spend 8min cruising and 2min queueing
during the morning peak.

In Figure 8, we observe the performance of the con-
troller with regard to trip request satisfaction under vari-
ous fleet loadings. Based on these results and on those in
Figure 9, the 45,000-fleet case appears as the user-
optimal case. To compare this with the alternate strategy
where vehicles are cruising, instead of parked, we com-
pare the 36,000-fleet case under both conditions.
Comparing Figure 8c and d, we see that waiting time is
slightly lower under the parking strategy (as indicated by
the area between the blue and orange curves). Overall,
parking ensures that demand is ultimately met, as can be
seen toward the end of the curves in both Figure 8c

and d. Note that Figure 8 counts the requests, pickups,
and drop-offs observed in each 5-min interval.
Obviously, not all the requests sent in a certain 5-min
interval are picked up and dropped off in the same inter-
val, as they will be served later. The request-to-drop-off
ratio is highest at about 8:00 a.m. and narrows down
toward the end of the observed scenario. When the ser-
vice is not well configured, for example, with 36,000
vehicles and no parking, the number of requests served
does not recover the number of requests sent, while using
parking solves this problem.

In Figure 10 we compare driver behavior and fleet
management between the ‘‘traditional MoD only’’ and
the ‘‘AMoD only’’ scenarios. Note that MoD vehicles
are not parked or driven to a pre-specified location to
pick up. Instead, passengers are picked up while hailing
or waiting at the taxi stand. In the AMoD case, the fleet
is more efficiently managed, as they are introduced incre-
mentally, while MoD drivers are introduced according to
their shift starting time. As the MoD shifts are set ineffi-
ciently, they spend a lot of time cruising. However, this
inefficiency is greatly reduced toward the end of peak
period.

In Figure 9 we report the impact on user-metrics of
the different services, under different settings. Journey
times (JT) do not include waiting times (W), which are
represented separately. As expected, the shared requests
experience higher waiting times. The increase in fleet size
is clearly beneficial for non-shared requests, while its
impact is less pronounced for the shared. This can be
explained by the interest of the operator in decreasing
the miles traveled: even if a large fleet is available, it will
try to serve the shared requests with as few active vehicles
as possible, as long as the user requirements are satisfied.
This is reflected in the matching algorithm we have used
(18). It is clear from Figure 9 that the 45,000AMoD fleet
case is user-optimal. A limitation of the simulation
framework at the time this experiment was carried out is
that taxi waiting times are not given explicitly. However,
as can be seen from the average JT, similar levels of ser-
vice are provided by both the AMoD and the traditional
MoD cases. In Table 2, we compare average travel times
and distances for passenger-vehicle trips for the two sce-
narios. These indicate that the overall patterns for single-
passenger trips are largely unchanged. As expected,
travel times for AMoD Pool are about 50% greater on
average.

Conclusion

We have demonstrated an agent-based simulation of
daily activity patterns and movements in a dense urban
network, using Singapore as a case study. Importantly,
we have modeled in adequate fashion the behavior and

Figure 7. MoD driver behavior during simulation.
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movement of traditional MoD services and compared
comprehensively how this performs relative to the near-
futuristic automated MoD service. Our simulator—
SimMobility—has enabled us to test the impacts on net-
work performance of the user-optimal automated case to
the traditional case.

A key finding of this research is that a significant
reduction in PT modes (12%) and a dramatic increase in

mobility on-demand share (four times greater) are
observed when AMoD services are offered as a substitute
for traditional MoD services. Additionally, while
demand for AMoD is over four times greater than that
of traditional MoD, only about twice as many fleets are
required to satisfy the increased demand levels. In the
‘‘traditional MoD only’’ case, there are 20,000 taxis
available during the morning peak. For the ‘‘AMoD

Figure 8. Controller performance for AMoD service under various fleet size scenarios, all implemented with parking except (d).
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Table 2. Average Travel Times and Distances for Passenger-Vehicle Trips in Both Scenarios

Scenario

MoD avg.
travel time

(min)

MoD avg.
trip distance

(km)

AMoD avg.
travel time

(min)

AMoD avg.
trip distance

(km)

AMoD
pool avg. travel

time (min)

AMoD
pool avg. trip
distance (km)

Car avg.
travel time

(min)

Car avg.
travel

distance
(km)

Traditional
MoD

14.5 10.1 na na na na 14.6 9.4

AMoD na na 13.2 8.0 20.3 13.7 15.6 10.0
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AMoD 25K vehicles with parking

AMoD 30K vehicles with parking

AMoD 36K vehicles with parking

AMoD 40K vehicles with parking

AMoD 45K vehicles with parking

AMoD 36K vehicles without parking

Traditional MoD

Figure 9. Waiting time (W) across automated on-demand modes for the different scenarios (in minutes). Average network-wide W is
the average W over buses, trains, and MoD. Journey time captures average travel time across all modes.

Figure 10. Vehicle utilization profiles for: (a) ‘‘Traditional MoD only’’ (20,000 vehicles); and (b) ‘‘AMoD only’’ (45,000 vehicles) scenarios.
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only’’ case, we employed simulation tests to obtain the
user-optimal fleet size of 45,000 for the same period, ser-
vicing 0.2million trips (over 5 times those of traditional
MoD). This demonstrates that AMoD fleets are more
efficiently managed compared with MoD fleets, and
have the potential to improve urban mobility outcomes
with the same level of service, at likely lower costs. We
also show that when ride-sharing is predominant, then
fewer fleets can serve the demand just as efficiently.

Our further avenues of research include quantifying
the cost implications of AMoD implementation strate-
gies and comparing their respective benefits. Given our
capabilities to sufficiently model current Uber-like mobi-
lity on demand systems, we would like to further investi-
gate driver behavior under today’s MoD frameworks.

The differences in urban form and rates of technologi-
cal and infrastructural development indicate that the
introduction of AMoD services will have widely varying
impacts. There are critical questions to be answered
regarding its effects on congestion, parking and public
transportation ridership. To better understand these
future patterns, we are currently developing prototype
cities representing distinct urban typologies. By simulat-
ing relevant scenarios in these prototype cities, we can
further obtain insights into policy intersections for the
best outcomes for AMoD service implementation.
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